Computing theory analyzes abstract computational models to rigorously study the computational difficulty of various problems. Introductory computing theory can be challenging for undergraduate students, and the main goal of our research is to help students learn these computational models. The most common pedagogical tool for interacting with these models is the Java Formal Languages and Automata Package (JFLAP). We developed a JFLAP server extension, which accepts homework submissions from students, evaluates the submission as correct or incorrect, and provides a witness string when the submission is incorrect. Our extension currently provides witness feedback for deterministic finite automata, nondeterministic finite automata, regular expressions, context-free grammars, and pushdown automata. In Fall 2019, we ran a preliminary investigation on two sections (Control and Study) of the required undergraduate course Introduction to Computer Science Theory. The Study section used our extension for five targeted homework questions, and the Control section solved and submitted these problems using traditional means. Our results show that on these five questions, the Study section performed better on average than the Control section. Moreover, the Study section persisted in submitting attempts until correct, and from this finding, our preliminary conclusion is that minimal (not detailed or grade-based) witness feedback helps students to truly learn the concepts. We describe the results that support this conclusion as well as a related hypothesis conjecturing that with witness feedback and unlimited number of submissions, partial credit is both unnecessary and ineffective.
翻译:计算理论分析抽象的计算模型, 以严格研究各种问题的计算难度。 入门计算理论对本科生来说具有挑战性, 我们研究的主要目标是帮助学生学习这些计算模型。 与这些模型互动的最常见教学工具是 Java 正式语言和自动地图包( JFLAP )。 我们开发了一个 JFLAP 服务器扩展, 接受学生提交的家庭作业报告, 评估提交文件正确或不正确, 并在提交文件不正确时提供证人字符串。 我们的扩展目前为确定性有限自动数据、 非确定性有限自治数据、 常规表达方式、 无背景语法和推倒自动地图提供了证人反馈。 此外, 研究部分在提交部分尝试直到正确, 并且从这一错误的假设中我们进行了初步调查。 计算机科学理论引言。 研究部分利用我们的扩展用于五个有针对性的家庭作业问题, 控制部分用传统手段解决并提交了这些问题。 我们的结果表明, 这五个问题的研究部分的平均表现比控制部分要好。 此外, 研究部分在提交部分的尝试中一直坚持提交部分, 直至正确, 并且从这个错误的假设中, 我们的初步和 学习了一个不固定的实验结论, 有助于 的实验学生们的 学习了一个不固定的 。