Open-Retrieval Generative Question Answering (GenQA) is proven to deliver high-quality, natural-sounding answers in English. In this paper, we present the first generalization of the GenQA approach for the multilingual environment. To this end, we present the GenTyDiQA dataset, which extends the TyDiQA evaluation data (Clark et al., 2020) with natural-sounding, well-formed answers in Arabic, Bengali, English, Japanese, and Russian. For all these languages, we show that a GenQA sequence-to-sequence-based model outperforms a state-of-the-art Answer Sentence Selection model. We also show that a multilingually-trained model competes with, and in some cases outperforms, its monolingual counterparts. Finally, we show that our system can even compete with strong baselines, even when fed with information from a variety of languages. Essentially, our system is able to answer a question in any language of our language set using information from many languages, making it the first Language-Agnostic GenQA system.
翻译:公开检索生成问题解答( GenQA) 已被证明能以英语提供高质量的自然答案。 在本文中, 我们首次展示了对多语种环境的GENQA方法的概括化。 为此, 我们展示了GenTyDiQA数据集, 该数据集扩展了 TyDiQA 评估数据( Clark et al., 2020), 以阿拉伯文、 孟加拉文、 英文、 日文 和俄文提供自然声音和完善的答案。 对于所有这些语言, 我们展示了基于 GENQA 序列到 序列的模型超越了最先进的回答句选择模式。 我们还显示, 受过多语种培训的模型与单语种对应的模型竞争, 在某些情况下也优于其单一语言对应系统。 最后, 我们显示, 我们的系统甚至可以与强大的基线竞争, 即使从多种语言中提供信息。 从根本上说, 我们的系统能够用我们语言组合的任何语言回答一个问题, 使用许多语言的信息, 使它成为第一个语言- Agnestic GenQA系统。