This paper considers the use of Robust PCA in a CUR decomposition framework and applications thereof. Our main algorithms produce a robust version of column-row factorizations of matrices $\mathbf{D}=\mathbf{L}+\mathbf{S}$ where $\mathbf{L}$ is low-rank and $\mathbf{S}$ contains sparse outliers. These methods yield interpretable factorizations at low computational cost, and provide new CUR decompositions that are robust to sparse outliers, in contrast to previous methods. We consider two key imaging applications of Robust PCA: video foreground-background separation and face modeling. This paper examines the qualitative behavior of our Robust CUR decompositions on the benchmark videos and face datasets, and find that our method works as well as standard Robust PCA while being significantly faster. Additionally, we consider hybrid randomized and deterministic sampling methods which produce a compact CUR decomposition of a given matrix, and apply this to video sequences to produce canonical frames thereof.
翻译:本文考虑在 CUR 分解框架及其应用中使用硬化五氯苯甲醚。 我们的主要算法生成了一种坚固的基体 $\ mathbff{D ⁇ mathbf{L ⁇ mathbf{S}$, 其中$\mathbf{L}$是低级的,$\mathbf{S}$包含稀有的外端。 这些方法产生低计算成本的可解释因子化, 并提供了与以往方法相比对稀释的外端十分强大的新的CUR 分解法。 我们考虑了 Robust CPA 的两种关键成像应用: 视频的地表- 地分解和面建模。 本文审视了robust CUR 在基准视频和面数据集上的分解的定性行为, 并发现我们的方法和标准 Robust 五氯苯甲醚在快速地发挥作用。 此外, 我们考虑混合的随机和确定性采样方法, 以产生一个紧凑的 CUR 分解矩阵,, 并应用于视频序列 。