This paper considers the use of Robust PCA in a CUR decomposition framework and applications thereof. Our main algorithms produce a robust version of column-row factorizations of matrices $\mathbf{D}=\mathbf{L}+\mathbf{S}$ where $\mathbf{L}$ is low-rank and $\mathbf{S}$ contains sparse outliers. These methods yield interpretable factorizations at low computational cost, and provide new CUR decompositions that are robust to sparse outliers, in contrast to previous methods. We consider two key imaging applications of Robust PCA: video foreground-background separation and face modeling. This paper examines the qualitative behavior of our Robust CUR decompositions on the benchmark videos and face datasets, and find that our method works as well as standard Robust PCA while being significantly faster. Additionally, we consider hybrid randomized and deterministic sampling methods which produce a compact CUR decomposition of a given matrix, and apply this to video sequences to produce canonical frames thereof.


翻译:本文考虑在 CUR 分解框架及其应用中使用硬化五氯苯甲醚。 我们的主要算法生成了一种坚固的基体 $\ mathbff{D ⁇ mathbf{L ⁇ mathbf{S}$, 其中$\mathbf{L}$是低级的,$\mathbf{S}$包含稀有的外端。 这些方法产生低计算成本的可解释因子化, 并提供了与以往方法相比对稀释的外端十分强大的新的CUR 分解法。 我们考虑了 Robust CPA 的两种关键成像应用: 视频的地表- 地分解和面建模。 本文审视了robust CUR 在基准视频和面数据集上的分解的定性行为, 并发现我们的方法和标准 Robust 五氯苯甲醚在快速地发挥作用。 此外, 我们考虑混合的随机和确定性采样方法, 以产生一个紧凑的 CUR 分解矩阵,, 并应用于视频序列 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
已删除
将门创投
3+阅读 · 2017年10月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月4日
Coo: Rethink Data Anomalies In Databases
Arxiv
0+阅读 · 2021年10月1日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
已删除
将门创投
3+阅读 · 2017年10月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员