Many real-life optimization problems frequently contain one or more constraints or objectives for which there are no explicit formulas. If data is however available, these data can be used to learn the constraints. The benefits of this approach are clearly seen, however there is a need for this process to be carried out in a structured manner. This paper therefore provides a framework for Optimization with Constraint Learning (OCL) which we believe will help to formalize and direct the process of learning constraints from data. This framework includes the following steps: (i) setup of the conceptual optimization model, (ii) data gathering and preprocessing, (iii) selection and training of predictive models, (iv) resolution of the optimization model, and (v) verification and improvement of the optimization model. We then review the recent OCL literature in light of this framework, and highlight current trends, as well as areas for future research.


翻译:许多实际生活优化问题往往包含一种或多种没有明确公式的限制或目标,然而,如果有数据,这些数据可以用来了解制约因素。这种方法的好处是显而易见的,但有必要以有条不紊的方式开展这一进程。因此,本文件提供了一个与约束性学习优化化框架,我们认为这将有助于正式确定和引导从数据中学习制约因素的进程。这一框架包括以下步骤:(一) 建立概念优化模型,(二) 数据收集和预处理,(三) 选择和培训预测模型,(四) 解决优化模型,(五) 核实和改进优化模型。然后,我们根据这一框架审查最近关于控制性学习的文献,并着重指出当前趋势以及今后研究的领域。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
inpluslab
8+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
126+阅读 · 2020年9月6日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
14+阅读 · 2021年8月5日
Arxiv
126+阅读 · 2020年9月6日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员