On-device deep learning models have extensive real world demands. Deep learning compilers efficiently compile models into executables for deployment on edge devices, but these executables may face the threat of reverse engineering. Previous studies have attempted to decompile DNN executables, but they face challenges in handling compilation optimizations and analyzing quantized compiled models. In this paper, we present NeuroDeX to unlock diverse support in decompiling DNN executables. NeuroDeX leverages the semantic understanding capabilities of LLMs along with dynamic analysis to accurately and efficiently perform operator type recognition, operator attribute recovery and model reconstruction. NeuroDeX can recover DNN executables into high-level models towards compilation optimizations, different architectures and quantized compiled models. We conduct experiments on 96 DNN executables across 12 common DNN models. Extensive experimental results demonstrate that NeuroDeX can decompile non-quantized executables into nearly identical high-level models. NeuroDeX can recover functionally similar high-level models for quantized executables, achieving an average top-1 accuracy of 72%. NeuroDeX offers a more comprehensive and effective solution compared to previous DNN executables decompilers.


翻译:设备端深度学习模型具有广泛的实际需求。深度学习编译器高效地将模型编译为可执行文件,以便在边缘设备上部署,但这些可执行文件可能面临逆向工程的威胁。先前的研究尝试对深度神经网络可执行文件进行反编译,但在处理编译优化和分析量化编译模型方面面临挑战。本文提出NeuroDeX,以解锁深度神经网络可执行文件反编译的多样化支持。NeuroDeX利用大型语言模型的语义理解能力,结合动态分析,准确高效地执行算子类型识别、算子属性恢复和模型重建。NeuroDeX能够将深度神经网络可执行文件恢复为面向编译优化、不同架构和量化编译模型的高级模型。我们在12种常见深度神经网络模型的96个可执行文件上进行了实验。大量实验结果表明,NeuroDeX能够将非量化可执行文件反编译为几乎完全相同的高级模型。对于量化可执行文件,NeuroDeX能够恢复功能相似的高级模型,平均top-1准确率达到72%。与以往的深度神经网络可执行文件反编译器相比,NeuroDeX提供了更全面有效的解决方案。

0
下载
关闭预览

相关内容

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员