On-device deep learning models have extensive real world demands. Deep learning compilers efficiently compile models into executables for deployment on edge devices, but these executables may face the threat of reverse engineering. Previous studies have attempted to decompile DNN executables, but they face challenges in handling compilation optimizations and analyzing quantized compiled models. In this paper, we present NeuroDeX to unlock diverse support in decompiling DNN executables. NeuroDeX leverages the semantic understanding capabilities of LLMs along with dynamic analysis to accurately and efficiently perform operator type recognition, operator attribute recovery and model reconstruction. NeuroDeX can recover DNN executables into high-level models towards compilation optimizations, different architectures and quantized compiled models. We conduct experiments on 96 DNN executables across 12 common DNN models. Extensive experimental results demonstrate that NeuroDeX can decompile non-quantized executables into nearly identical high-level models. NeuroDeX can recover functionally similar high-level models for quantized executables, achieving an average top-1 accuracy of 72%. NeuroDeX offers a more comprehensive and effective solution compared to previous DNN executables decompilers.
翻译:设备端深度学习模型具有广泛的实际需求。深度学习编译器高效地将模型编译为可执行文件,以便在边缘设备上部署,但这些可执行文件可能面临逆向工程的威胁。先前的研究尝试对深度神经网络可执行文件进行反编译,但在处理编译优化和分析量化编译模型方面面临挑战。本文提出NeuroDeX,以解锁深度神经网络可执行文件反编译的多样化支持。NeuroDeX利用大型语言模型的语义理解能力,结合动态分析,准确高效地执行算子类型识别、算子属性恢复和模型重建。NeuroDeX能够将深度神经网络可执行文件恢复为面向编译优化、不同架构和量化编译模型的高级模型。我们在12种常见深度神经网络模型的96个可执行文件上进行了实验。大量实验结果表明,NeuroDeX能够将非量化可执行文件反编译为几乎完全相同的高级模型。对于量化可执行文件,NeuroDeX能够恢复功能相似的高级模型,平均top-1准确率达到72%。与以往的深度神经网络可执行文件反编译器相比,NeuroDeX提供了更全面有效的解决方案。