Building custom data analysis platforms traditionally requires extensive software engineering expertise, limiting accessibility for many researchers. Here, I demonstrate that modern large language models (LLMs) and autonomous coding agents can dramatically lower this barrier through a process called 'vibe coding', an iterative, conversational style of software creation where users describe goals in natural language and AI agents generate, test, and refine executable code in real-time. As a proof of concept, I used Vibe coding to create a fully functional proteomics data analysis website capable of performing standard tasks, including data normalization, differential expression testing, and volcano plot visualization. The entire application, including user interface, backend logic, and data upload pipeline, was developed in less than ten minutes using only four natural-language prompts, without any manual coding, at a cost of under $2. Previous works in this area typically require tens of thousands of dollars in research effort from highly trained programmers. I detail the step-by-step generation process and evaluate the resulting code's functionality. This demonstration highlights how vibe coding enables domain experts to rapidly prototype sophisticated analytical tools, transforming the pace and accessibility of computational biology software development.
翻译:构建定制化数据分析平台传统上需要广泛的软件工程专业知识,这限制了许多研究人员的可及性。本文证明,现代大语言模型(LLMs)和自主编码代理能够通过一种称为“vibe coding”的过程显著降低这一门槛。这是一种迭代式、对话式的软件创建方式:用户用自然语言描述目标,AI代理则实时生成、测试并优化可执行代码。作为概念验证,我使用Vibe编码创建了一个功能完整的蛋白质组学数据分析网站,能够执行包括数据标准化、差异表达检验和火山图可视化在内的标准任务。整个应用程序——包括用户界面、后端逻辑和数据上传流程——仅通过四条自然语言提示在十分钟内开发完成,无需任何手动编码,成本低于2美元。该领域以往的研究通常需要由训练有素的程序员投入数万美元的研究努力。我详细阐述了逐步生成过程并评估了生成代码的功能性。本研究表明,vibe coding如何使领域专家能够快速构建复杂分析工具的原型,从而改变计算生物学软件开发的速度和可及性。