A fundamental challenge in millimeter-wave (mmWave) communication is the susceptibility to blocking objects. One way to alleviate this problem is the use of reconfigurable intelligent surfaces (RIS). Nevertheless, due to the large number of passive reflecting elements on RIS, channel estimation turns out to be a challenging task. In this paper, we address the channel estimation for RIS-aided mmWave communication systems based on a localization method. The proposed idea consists of exploiting the sparsity of the mmWave channel and the topology of the RIS. In particular, we first propose the concept of reflecting unit set (RUS) to improve the flexibility of RIS. We then propose a novel coplanar maximum likelihood-based (CML) 3D positioning method based on the RUS, and derive the Cramer-Rao lower bound (CRLB) for the positioning method. Furthermore, we develop an efficient positioning-based channel estimation scheme with low computational complexity. Compared to state-of-the-art methods, our proposed method requires less time-frequency resources in channel acquisition as the complexity is independent to the total size of the RIS but depends on the size of the RUSs, which is only a small portion of the RIS. Large performance gains are confirmed in simulations, which proves the effectiveness of the proposed method.
翻译:毫米波(mmWave)通信中的一项根本挑战是阻截物体的易感性。缓解这一问题的方法之一是使用可重新配置的智能表面(RIS)来缓解这一问题。然而,由于RIS上有大量被动反射元素,频道估计结果是一项艰巨的任务。在本文件中,我们处理基于定位方法的RIS辅助毫米Wave通信系统的频道估计。提议的构想包括利用毫米Wave频道的广度和RIS的地形学。特别是,我们首先提出了反映单元集(RUS)的概念,以提高RIS的灵活性。我们随后提出了基于RIS的新型双平面最大概率(CML)3D定位方法,并得出定位方法的Cramer-Rao较低约束(CRLB)的频道估计。此外,我们开发了一个高效的基于定位的频道估计计划,其计算复杂性较低。与最新设计方法相比,我们提出的方法要求在频道获取中减少时间频率资源,因为复杂度(RIS)的复杂度仅独立于RIS的整体规模,而其确认的成绩取决于RIS的大小。