When spreadsheets are filled freely by knowledge workers, they can contain rather unstructured content. For humans and especially machines it becomes difficult to interpret such data properly. Therefore, spreadsheets are often converted to a more explicit, formal and structured form, for example, to a knowledge graph. However, if a data maintenance strategy has been missing and user-generated data becomes "messy", the construction of knowledge graphs will be a challenging task. In this paper, we catalog several of those challenges and propose an interactive approach to solve them. Our approach includes a graphical user interface which enables knowledge engineers to bulk-annotate spreadsheet cells with extracted information. Based on the cells' annotations a knowledge graph is ultimately formed. Using five spreadsheets from an industrial scenario, we built a 25k-triple graph during our evaluation. We compared our method with the state-of-the-art RDF Mapping Language (RML) attempt. The comparison highlights contributions of our approach.


翻译:当电子表格由知识工作者自由填充时,它们可以包含相当非结构化的内容。对于人类,特别是机器来说,很难正确解释这些数据。因此,电子表格往往被转换成更加清晰、正规和结构化的形式,例如,知识图。然而,如果数据维护战略缺失,用户生成的数据成为“迷思”,那么,构建知识图将是一项具有挑战性的任务。在本文中,我们将其中的一些挑战编集成目录,并提出解决这些挑战的交互方法。我们的方法包括一个图形用户界面,使知识工程师能够用提取的信息对电子表格单元格进行批量注。根据这些单元格的说明,最终将形成一个知识图表。在评估过程中,我们用一种工业情景的五个电子表格建立了一个25千字图。我们比较了我们的方法与最先进的RDF绘图语言(RML)的尝试。比较突出表明了我们的方法的贡献。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
6+阅读 · 2017年7月6日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员