Collaborative interactions require social robots to adapt to the dynamics of human affective behaviour. Yet, current approaches for affective behaviour generation in robots focus on instantaneous perception to generate a one-to-one mapping between observed human expressions and static robot actions. In this paper, we propose a novel framework for personality-driven behaviour generation in social robots. The framework consists of (i) a hybrid neural model for evaluating facial expressions and speech, forming intrinsic affective representations in the robot, (ii) an Affective Core, that employs self-organising neural models to embed robot personality traits like patience and emotional actuation, and (iii) a Reinforcement Learning model that uses the robot's affective appraisal to learn interaction behaviour. For evaluation, we conduct a user study (n = 31) where the NICO robot acts as a proposer in the Ultimatum Game. The effect of robot personality on its negotiation strategy is witnessed by participants, who rank a patient robot with high emotional actuation higher on persistence, while an inert and impatient robot higher on its generosity and altruistic behaviour.
翻译:合作互动要求社会机器人适应人类感官行为的动态。然而,目前机器人的感官行为生成方法侧重于瞬时感知,以生成观察到的人类表现形式和静态机器人行为之间的一对一映射。在本文件中,我们提议了社会机器人中个性驱动行为生成的新框架。框架包括:(一) 用于评价面部表达和言语的混合神经模型,在机器人中形成内在的感官表现,在机器人中形成内在感官表现,(二) 情感核心,利用自我组织神经模型嵌入机器人的个性特征,如耐心和情感动作,以及(三) 强化学习模型,利用机器人的感官评估来学习互动行为。为了评估,我们进行了用户研究(n=31),NICO机器人在Ultimart游戏中充当提议者。参与者见证了机器人个性对其谈判战略的影响,他们将一个情感触动力较高的耐心高的病人机器人排在持久性上,而一个惰性和不动的机器人在慷慨和利特主义行为上更高。