The real symplectic Stiefel manifold is the manifold of symplectic bases of symplectic subspaces of a fixed dimension. It features in a large variety of applications in physics and engineering. In this work, we study this manifold with the goal of providing theory and matrix-based numerical tools fit for basic data processing. Geodesics are fundamental for data processing. However, these are so far unknown. Pursuing a Lie group approach, we close this gap and derive efficiently computable formulas for the geodesics both with respect to a natural pseudo-Riemannian metric and a novel Riemannian metric. In addition, we provide efficiently computable and invertible retractions. Moreover, we introduce the real symplectic Grassmann manifold, i.e., the manifold of symplectic subspaces. Again, we derive efficient formulas for pseudo-Riemannian and Riemannian geodesics and invertible retractions. The findings are illustrated by numerical experiments, where we consider optimization via gradient descent on both manifolds and compare the proposed methods with the state of the art. In particular, we treat the 'nearest symplectic matrix' problem and the problem of optimal data representation via a low-rank symplectic subspace. The latter task is associated with the problem of finding a 'proper symplectic decomposition', which is important in structure-preserving model order reduction of Hamiltonian systems.


翻译:真实的共振分布式Stiefel 方块是固定维度的共振基数的方块。 它在物理和工程的多种应用中都有其特征。 在这项工作中, 我们研究这个方块, 目的是提供理论性和基于矩阵的适合基本数据处理的数字工具。 大地学是数据处理的基础。 然而, 这些是未知的。 采用 利伊 集团 方法, 我们缩小这一差距, 并为大地学获得高效的可调制公式, 包括自然假义里曼度和新颖的里伊曼度。 此外, 我们提供高效的可调制和不可逆的回溯。 此外, 我们研究这个方块, 目的是提供真正具有理论性和基于矩阵的数值的数值, 从而提供适合基本数据处理的模型。 我们从中得出有效的公式公式公式, 我们考虑通过渐渐渐的深度下降, 将低位位位位数结构与低位变压的模型进行对比, 后者的后位分析问题就是 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Cross-Modal & Metric Learning 跨模态检索专题-2
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Cross-Modal & Metric Learning 跨模态检索专题-2
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员