Over a complete Riemannian manifold of finite dimension, Greene and Wu introduced a convolution, known as Greene-Wu (GW) convolution. In this paper, we study properties of the GW convolution and apply it to non-Euclidean machine learning problems. In particular, we derive a new formula for how the curvature of the space would affect the curvature of the function through the GW convolution. Also, following the study of the GW convolution, a new method for gradient estimation over Riemannian manifolds is introduced.
翻译:Greene和Wu提出一个称为Greene-Wu(GW) Convolution(GW)的革命,在本文中,我们研究GW convolution的特性,并将其应用于非欧洲的机器学习问题。特别是,我们为空间的曲线如何通过GW convolution影响功能的曲线,提出了一个新的公式。此外,在GW convolution研究后,还引入了对Riemannian plents的梯度估计新方法。