Rapid convergence of the shifted QR algorithm on symmetric matrices was shown more than fifty years ago. Since then, despite significant interest and its practical relevance, an understanding of the dynamics of the shifted QR algorithm on nonsymmetric matrices has remained elusive. We give a family of shifting strategies for the Hessenberg shifted QR algorithm with provably rapid global convergence on nonsymmetric matrices of bounded nonnormality, quantified in terms of the condition number of the eigenvector matrix -- the convergence is linear with a constant rate, and for a well-chosen strategy from this family, the computational cost of each QR step scales roughly logarithmically in the eigenvector condition number. The key ideas in the analysis are: (1) to use certain higher degree shifts to dampen transient effects due to nonnormality (2) to characterize and detect slowly converging trajectories with respect to such shifts in terms of certain symmetry considerations, and to break this symmetry explicitly in the shifting strategy. We perform our analysis in exact arithmetic. In the companion papers [Global Convergence of Hessenberg Shifted QR II: Numerical Stability and Deflation], [Global Convergence of Hessenberg Shifted QR III: Approximate Ritz Values via Shifted Inverse Iteration], we show that our shifting strategies can be implemented efficiently in finite arithmetic.
翻译:50多年前,在对称矩阵上的变化的 QR 算法迅速趋同了50多年前,在对称矩阵上的变化的 QR 算法迅速趋同了。自那以来,尽管人们对非对称矩阵上的变化的 QR 算法的动态很感兴趣且具有实际相关性,但是对非对称矩阵上变化的 QR 算法的动态仍然难以理解。我们给出了一套对赫森贝格变的 QR 算法的转变战略的组合,在非对称非异常的非对称矩阵上的变化中,可以迅速看到全球对称矩阵的快速趋同性趋同,从某种对称性考虑的条件数中加以量化 -- -- 这种趋同是直线性的,对于来自这个家族的精选战略,我们用精确的算法分析了每步阶梯级的计算成本。 分析中的关键思想是:(1) 使用某种更高程度的转变,以抑制因非常态性而导致的转动效应(2) 确定并检测到某些对称性考虑的变化,在变化战略中可以明确打破这种对称。 我们用精确的对数分析。