Smart manufacturing can significantly improve efficiency and reduce energy consumption, yet the energy demands of AI models may offset these gains. This study utilizes in-situ sensing-based prediction of geometric quality in smart machining to compare the energy consumption, accuracy, and speed of common AI models. HyperDimensional Computing (HDC) is introduced as an alternative, achieving accuracy comparable to conventional models while drastically reducing energy consumption, 200$\times$ for training and 175 to 1000$\times$ for inference. Furthermore, HDC reduces training times by 200$\times$ and inference times by 300 to 600$\times$, showcasing its potential for energy-efficient smart manufacturing.


翻译:智能制造能显著提升效率并降低能耗,但人工智能模型的能源需求可能抵消这些收益。本研究基于智能加工中的原位传感几何质量预测,比较了常见人工智能模型的能耗、精度和速度。超维计算被引入作为一种替代方案,在实现与传统模型相当精度的同时,大幅降低了能耗——训练能耗降低200倍,推理能耗降低175至1000倍。此外,超维计算将训练时间缩短200倍,推理时间缩短300至600倍,展示了其在节能智能制造中的潜力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员