Strictly serializable datastores greatly simplify the development of correct applications by providing strong consistency guarantees. However, existing techniques pay unnecessary costs for naturally consistent transactions, which arrive at servers in an order that is already strictly serializable. We find these transactions are prevalent in datacenter workloads. We exploit this natural arrival order by executing transaction requests with minimal costs while optimistically assuming they are naturally consistent, and then leverage a timestamp-based technique to efficiently verify if the execution is indeed consistent. In the process of designing such a timestamp-based technique, we identify a fundamental pitfall in relying on timestamps to provide strict serializability, and name it the timestamp-inversion pitfall. We find timestamp-inversion has affected several existing works. We present Natural Concurrency Control (NCC), a new concurrency control technique that guarantees strict serializability and ensures minimal costs -- i.e., one-round latency, lock-free, and non-blocking execution -- in the best (and common) case by leveraging natural consistency. NCC is enabled by three key components: non-blocking execution, decoupled response control, and timestamp-based consistency check. NCC avoids timestamp-inversion with a new technique: response timing control, and proposes two optimization techniques, asynchrony-aware timestamps and smart retry, to reduce false aborts. Moreover, NCC designs a specialized protocol for read-only transactions, which is the first to achieve the optimal best-case performance while ensuring strict serializability, without relying on synchronized clocks. Our evaluation shows that NCC outperforms state-of-the-art solutions by an order of magnitude on many workloads.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月11日
Arxiv
0+阅读 · 2023年7月10日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员