DADAO is a novel decentralized asynchronous stochastic algorithm to minimize a sum of $L$-smooth and $\mu$-strongly convex functions distributed over a time-varying connectivity network of size $n$. We model the local gradient updates and gossip communication procedures with separate independent Poisson Point Processes, decoupling the computation and communication steps in addition to making the whole approach completely asynchronous. Our method employs primal gradients and do not use a multi-consensus inner loop nor other ad-hoc mechanisms as Error Feedback, Gradient Tracking or a Proximal operator. By relating spatial quantities of our graphs $\chi^*_1,\chi_2^*$ to a necessary minimal communication rate between nodes of the network, we show that our algorithm requires $\mathcal{O}(n\sqrt{\frac{L}{\mu}}\log \epsilon)$ local gradients and only $\mathcal{O}(n\sqrt{\chi_1^*\chi_2^*}\sqrt{\frac{L}{\mu}}\log \epsilon)$ communications to reach a precision $\epsilon$. If SGD with uniform noise $\sigma^2$ is used, we reach a precision $\epsilon$ with same speed, up to a bias term in $\mathcal{O}(\frac{\sigma^2}{\sqrt{\mu L}})$. This improves upon the bounds obtained with current state-of-the-art approaches, our simulations validating the strength of our relatively unconstrained method. Our source-code is released on a public repository.


翻译:DADO 是一个新颖的分散式零碎分析算法, 以最大限度地减少在时间变化的连接网络中分布的美元- mooth 和 $\mua- 坚固的 convex 函数。 我们用独立独立的 Poisson Point 进程模拟本地梯度更新和八卦通信程序, 将计算和通信步骤分离, 使整个方法完全不同步。 我们的方法使用原始梯度, 并且不使用多一致内环或其他机制作为错误反馈、 梯度跟踪或Proximal 操作器。 我们的图表的空间数量 $\ chi% 1,\ chi_ 2 $ 和网络节点之间必要的最低通信率。 我们的算法需要$\ macal{ O} (n\ mulog ) 本地梯度 $ (musmusl) 本地梯度值, 并且只有$\ mathclor_ commal_ $_ laxal_ laus a ral_ ral_ lium_ lax_ laus a gal_ lass dal_ dal_ dal_ laus dal_ rus dal_ laus a_ lax_ lax dal_ lax_ disl_ laxxxxxxx_ $_ l_ lixxxxxx_____ ligal__ ral__ lixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxal_l_l_l_l_l_l_l_l=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员