This paper provides a new avenue for exploiting deep neural networks to improve physics-based simulation. Specifically, we integrate the classic Lagrangian mechanics with a deep autoencoder to accelerate elastic simulation of deformable solids. Due to the inertia effect, the dynamic equilibrium cannot be established without evaluating the second-order derivatives of the deep autoencoder network. This is beyond the capability of off-the-shelf automatic differentiation packages and algorithms, which mainly focus on the gradient evaluation. Solving the nonlinear force equilibrium is even more challenging if the standard Newton's method is to be used. This is because we need to compute a third-order derivative of the network to obtain the variational Hessian. We attack those difficulties by exploiting complex-step finite difference, coupled with reverse automatic differentiation. This strategy allows us to enjoy the convenience and accuracy of complex-step finite difference and in the meantime, to deploy complex-value perturbations as collectively as possible to save excessive network passes. With a GPU-based implementation, we are able to wield deep autoencoders (e.g., $10+$ layers) with a relatively high-dimension latent space in real-time. Along this pipeline, we also design a sampling network and a weighting network to enable \emph{weight-varying} Cubature integration in order to incorporate nonlinearity in the model reduction. We believe this work will inspire and benefit future research efforts in nonlinearly reduced physical simulation problems.
翻译:本文为利用深层神经网络改善物理模拟提供了一个新的途径。 具体地说, 我们将经典拉格朗杰机械学与深自动编码器结合, 以加速变形固体的弹性模拟。 由于惯性效应, 不评估深自动编码网络的二阶衍生物, 就无法建立动态平衡。 这超出了现成自动分化包和算法的能力, 重点是梯度评估。 如果使用牛顿标准方法, 解决非线性力量平衡更具有挑战性。 这是因为我们需要对网络的第三阶衍生物进行计算, 以获得变形螺旋形固体的变形。 由于惯性效应, 我们无法建立动态平衡, 不对深层自动分解网络的二阶衍生物进行评估。 这超出了现成的自动分解包和算法的方便性和准确性, 同时, 将复杂值的扰动模型集中部署, 以节省过度的网络的振动性。 有了基于 GPU 的操作, 我们就能在实际的网络中进行深度非自动解析( e. g. 10+ res ) 未来网络中, 和 将一个高位化的网络中, 降低 的网络的网络 使我们进入一个高空间网络。