We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems described by advection-dominated partialdifferential equations. Those systems have slow-decaying Kolmogorovn-widththat hinders standard methods, including reduced order modeling, from producinghigh-fidelity simulations at low cost. In this work, we construct hypernetwork-based latent dynamical models directly on the parameter space of a compactrepresentation network. We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectoriesthat are both low-dimensional and smooth. These properties render our surrogatemodels highly efficient at inference time. We show the efficacy of our frameworkby learning models that generate accurate multi-step rollout predictions at muchfaster inference speed compared to competitors, for several challenging examples.
翻译:我们提出了一个数据驱动的、时空连续的框架,用于学习以对流为主的局部偏差方程式描述的复杂物理系统的替代模型。这些系统具有缓慢衰减的科尔莫戈罗夫-宽度,阻碍了标准方法,包括降低排序模型,无法以低成本制作高不忠模拟。在这项工作中,我们直接在一个压实代表网络的参数空间上构建基于超网络的潜伏动态模型。我们利用网络的表达力和特别设计的促进一致性的正规化,以获得低维和光滑的潜在轨迹。这些特性使得我们的代孕模型在推论时效率很高。我们用几个具有挑战性的例子展示了我们的框架学习模型的功效,这些模型产生精确的多步推出预测,其速度比竞争者要快得多。