Proper learning refers to the setting in which learners must emit predictors in the underlying hypothesis class $H$, and often leads to learners with simple algorithmic forms (e.g. empirical risk minimization (ERM), structural risk minimization (SRM)). The limitation of proper learning, however, is that there exist problems which can only be learned improperly, e.g. in multiclass classification. Thus, we ask: Under what assumptions on the hypothesis class or the information provided to the learner is a problem properly learnable? We first demonstrate that when the unlabeled data distribution is given, there always exists an optimal proper learner governed by distributional regularization, a randomized generalization of regularization. We refer to this setting as the distribution-fixed PAC model, and continue to evaluate the learner on its worst-case performance over all distributions. Our result holds for all metric loss functions and any finite learning problem (with no dependence on its size). Further, we demonstrate that sample complexities in the distribution-fixed PAC model can shrink by only a logarithmic factor from the classic PAC model, strongly refuting the role of unlabeled data in PAC learning (from a worst-case perspective). We complement this with impossibility results which obstruct any characterization of proper learnability in the realizable PAC model. First, we observe that there are problems whose proper learnability is logically undecidable, i.e., independent of the ZFC axioms. We then show that proper learnability is not a monotone property of the underlying hypothesis class, and that it is not a local property (in a precise sense). Our impossibility results all hold even for the fundamental setting of multiclass classification, and go through a reduction of EMX learning (Ben-David et al., 2019) to proper classification which may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员