Correspondence-based rotation search and point cloud registration are two fundamental problems in robotics and computer vision. However, the presence of outliers, sometimes even occupying the great majority of the putative correspondences, can make many existing algorithms either fail or have very high computational cost. In this paper, we present RANSIC (RANdom Sampling with Invariant Compatibility), a fast and highly robust method applicable to both problems based on a new paradigm combining random sampling with invariance and compatibility. Generally, RANSIC starts with randomly selecting small subsets from the correspondence set, then seeks potential inliers as graph vertices from the random subsets through the compatibility tests of invariants established in each problem, and eventually returns the eligible inliers when there exists at least one K-degree vertex (K is automatically updated depending on the problem) and the residual errors satisfy a certain termination condition at the same time. In multiple synthetic and real experiments, we demonstrate that RANSIC is fast for use, robust against over 95% outliers, and also able to recall approximately 100% inliers, outperforming other state-of-the-art solvers for both the rotation search and the point cloud registration problems.
翻译:以轮换为基础的轮换搜索和点云登记是机器人和计算机视觉的两个根本问题。 但是,外部线人的存在,有时甚至占据绝大多数的推定通信,可以造成许多现有的算法失败或计算成本很高。 在本文中,我们展示了一种快速和高度有力的方法,该方法适用于这两个问题,其依据是将随机抽样与不一致性和兼容性相结合的新模式。 一般来说, RANSIC 开始时随机地从通信集中选择小子集,然后通过对每个问题确定的变量进行兼容性测试,从随机子集中寻找可能的图象顶部,然后通过每个问题的变量的兼容性测试从随机子集中寻找图像顶部,最终在存在至少一个K度的顶部(K根据问题自动更新)和剩余错误同时满足一定的终止条件时,返回符合资格的内线。 在多个合成和真实的实验中,我们证明RANSIC 使用得很快,对超过95%的外端,并且能够回忆到大约100%的云层内部问题。