We propose an optimization-based approach to plan power grasps. Central to our method is a reformulation of grasp planning as an infinite program under complementary constraints (IPCC), which allows contacts to happen between arbitrary pairs of points on the object and the robot gripper. We show that IPCC can be reduced to a conventional finite-dimensional nonlinear program (NLP) using a kernel-integral relaxation. Moreover, the values and Jacobian matrices of the kernel-integral can be evaluated efficiently using a modified Fast Multipole Method (FMM). We further guarantee that the planned grasps are collision-free using primal barrier penalties. We demonstrate the effectiveness, robustness, and efficiency of our grasp planner on a row of challenging 3D objects and high-DOF grippers, such as Barrett Hand and Shadow Hand, where our method achieves superior grasp qualities over competitors.
翻译:我们建议一种基于优化的方法来规划掌握权力。我们方法的核心是重新制定掌握规划,使之成为一个在互补制约下(气专委)的无限方案,允许在物体上任意的两对点与机器人牵引器之间发生接触。我们表明,气专委可以使用内核-内分泌松懈式的放松,将它降为常规的有限非线性程序(NLP ) 。此外,内核-内分泌的数值和雅各基质可以通过修改的快速多极法(FMM ) ( FMM ) 来有效评估。 我们进一步保证计划中的掌握是没有碰撞的,使用原始屏障惩罚。 我们展示了我们掌握的三维物体和高DOF牵引器(如巴雷特手和影子手)在一连排挑战性三维物体和高DF握手(如巴雷特手和影子手)上取得优势的握力。