Coding theory and combinatorial $t$-designs have close connections and interesting interplay. One of the major approaches to the construction of combinatorial t-designs is the employment of error-correcting codes. As we all known, some $t$-designs have been constructed with this approach by using certain linear codes in recent years. However, only a few infinite families of cyclic codes holding an infinite family of $3$-designs are reported in the literature. The objective of this paper is to study an infinite family of cyclic codes and determine their parameters. By the parameters of these codes and their dual, some infinite family of $3$-designs are presented and their parameters are also explicitly determined. In particular, the complements of the supports of the minimum weight codewords in the studied cyclic code form a Steiner system. Furthermore, we show that the infinite family of cyclic codes admit $3$-transitive automorphism groups.


翻译:编码理论和组合式的$t-designs具有密切的联系和有趣的相互作用。构建组合式设计设计的主要方法之一是使用错误校正代码。正如我们大家所知,近年来通过使用某些线性代码来构建了一些美元设计。然而,文献中只报道了少数拥有无限家庭3美元设计的循环编码家庭。本文件的目的是研究一个无限的循环编码家庭并确定其参数。根据这些编码及其双重参数,提出了一些300美元设计家庭的无限定义,并明确确定了参数。特别是,对所研究的循环编码中最低重量编码支持的补充形成了一个施泰纳系统。此外,我们表明,无限的循环编码家庭接纳了3美元的透明自变型群体。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
0+阅读 · 2021年11月30日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员