Let $G$ be an $n$-vertex graph, and $s,t$ vertices of $G$. We present an efficient algorithm which enumerates the set of minimal $st$-separators of $G$ in ascending order of cardinality, with a delay of $O(n^{3.5})$ per separator. In particular, we present an algorithm that lists, in ascending order of cardinality, all minimal separators with at most $k$ vertices. In that case, we show that the delay of the enumeration algorithm is $O(kn^{2.5})$ per separator. Our process is based on a new method that can decide, in polynomial time, whether the set of minimal separators under certain inclusion, exclusion, and cardinality constraints is empty.


翻译:让 G$ 成为 $n 的顶点图, $, t $, t ods 。 我们提出了一个高效的算法, 将最低 $- separators 的集合量按基本值的升序计算, 延迟为 $( n ⁇ 3.5 } ) 美元 。 特别是, 我们提出了一个算法, 以最基本值的升序列出所有最低 的 separators, 最多为 $k$ 。 在此情况下, 我们显示查点算法的延迟是 $( kn ⁇ 2.5 } ) 。 我们的程序基于一种新的方法, 在多指标时间里, 可以决定特定包容、 排斥 和 基点限制 下的最低 分隔器的设定值是否为空 。

0
下载
关闭预览

相关内容

可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
14+阅读 · 2021年5月21日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月3日
A Gaussian method for the operator square root
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年1月31日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员