We present a tool for computing exact forward and backward reachable sets of deep neural networks with rectified linear unit (ReLU) activation. We then develop algorithms using this tool to compute invariant sets and regions of attraction (ROAs) for control systems with neural networks in the feedback loop. Our algorithm is unique in that it builds the reachable sets by incrementally enumerating polyhedral regions in the input space, rather than iterating layer-by-layer through the network as in other methods. When performing safety verification, if an unsafe region is found, our algorithm can return this result without completing the full reachability computation, thus giving an anytime property that accelerates safety verification. Furthermore, we introduce a method to accelerate the computation of ROAs in the case that deep learned components are homeomorphisms, which we find is surprisingly common in practice. We demonstrate our tool in several test cases. We compute a ROA for a learned van der Pol oscillator model. We find a control invariant set for a learned torque-controlled pendulum model. We also verify specific safety properties for multiple deep networks related to the ACAS Xu aircraft collision advisory system. Finally, we apply our algorithm to find ROAs for an image-based aircraft runway taxi problem. Algorithm source code: https://github.com/StanfordMSL/Neural-Network-Reach .
翻译:我们提出了一个工具,用于计算准确的前向和后向可获取的深神经网络,并激活纠正线性单元(ReLU)激活。然后,我们用这个工具开发算法,以计算神经网络回回回回回回回回回回路中控制系统的变异组合和吸引区域。我们的算法是独一无二的,因为它通过输入空间中递增地罗列多面区域来构建可获取的数据集,而不是以其他方法在网络中逐层复制。如果发现不安全区域,我们算法可以在不完成完全可达性计算的情况下返回这一结果,从而在任何时间提供加速安全核查的属性。此外,我们引入了一种方法,以加速计算具有深层次知识的构件是本土形态化的系统。我们在几个测试案例中展示了我们的工具。我们用一个ROA为学习的 van derPol 振动器模型来进行计算。我们找到一个变量控制器设置用于学习的硬盘控型模型。我们还核查了多个深层飞行器的具体安全特性,用于与ADAS-LAS-RAS-RA相关的甚高压系统。