In this work, we present a new approach for constructing models for correlation matrices with a user-defined graphical structure. The graphical structure makes correlation matrices interpretable and avoids the quadratic increase of parameters as a function of the dimension. We suggest an automatic approach to define a prior using a natural sequence of simpler models within the Penalized Complexity framework for the unknown parameters in these models. We illustrate this approach with three applications: a multivariate linear regression of four biomarkers, a multivariate disease mapping, and a multivariate longitudinal joint modelling. Each application underscores our method's intuitive appeal, signifying a substantial advancement toward a more cohesive and enlightening model that facilitates a meaningful interpretation of correlation matrices.
翻译:暂无翻译