Making an updated and as-built model plays an important role in the life-cycle of a process plant. In particular, Digital Twin models must be precise to guarantee the efficiency and reliability of the systems. Data-driven models can simulate the latest behavior of the sub-systems by considering uncertainties and life-cycle related changes. This paper presents a step-by-step concept for hybrid Digital Twin models of process plants using an early implemented prototype as an example. It will detail the steps for updating the first-principles model and Digital Twin of a brownfield process system using data-driven models of the process equipment. The challenges for generation of an as-built hybrid Digital Twin will also be discussed. With the help of process history data to teach Machine Learning models, the implemented Digital Twin can be continually improved over time and this work in progress can be further optimized.
翻译:在工艺厂的生命周期中,制作一个更新后即成的模型可以发挥重要作用,特别是数字双型模型必须精确,以保证系统的效率和可靠性;数据驱动模型可以通过考虑不确定性和生命周期相关变化来模拟子系统的最新行为;本文件为使用早期应用原型的混合数字双型工艺厂的混合数字双型模型提供了一个逐步的概念;它将详细说明更新第一个原则模型的步骤,以及利用工艺设备数据驱动模型更新棕色野外工艺系统的数字双型;还将讨论生成一个自建混合数字双型工艺的挑战;借助程序历史数据来教授机器学习模型,实施的数字双型工艺可以随着时间的推移不断改进,进展中的工作可以进一步优化。