Graph neural networks (GNNs) based on message passing between neighboring nodes are known to be insufficient for capturing long-range interactions in graphs. In this project we study hierarchical message passing models that leverage a multi-resolution representation of a given graph. This facilitates learning of features that span large receptive fields without loss of local information, an aspect not studied in preceding work on hierarchical GNNs. We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length w.r.t. the input graph size. Yet, under mild assumptions, its internal hierarchy maintains asymptotic size equivalent to that of the input graph. We observe that our HGNet outperforms conventional stacking of GCN layers particularly in molecular property prediction benchmarks. Finally, we propose two benchmarking tasks designed to elucidate capability of GNNs to leverage long-range interactions in graphs.
翻译:以相邻节点之间传递的信息为基础的图形神经网络(GNNs) 据知不足以在图表中捕捉远程互动。 在这个项目中,我们研究的是等级信息传递模式,这些传递模式能够利用一个特定图形的多分辨率表示方式。这有利于在不丢失当地信息的情况下学习大型可接收字段的特征,这是以往关于等级GNS的工作没有研究过的一个方面。我们引入了等级图形网络(HGNet),对任何两个连接的节点来说,这保证了信息传递路径的存在,在大多数对数长度 w.r.t. 输入图的大小。然而,在轻度假设下,其内部等级保持了与输入图一样的无光度大小。我们观察到,我们的HGNet超越了常规的GCN层堆叠,特别是在分子属性预测基准中。最后,我们提出两项基准任务,旨在说明GNNs在图形中利用长距离互动的能力。