One of the greatest challenges in IC design is the repeated executions of computationally expensive SPICE simulations, particularly when highly complex chip testing/verification is involved. Recently, pseudo transient analysis (PTA) has shown to be one of the most promising continuation SPICE solver. However, the PTA efficiency is highly influenced by the inserted pseudo-parameters. In this work, we proposed BoA-PTA, a Bayesian optimization accelerated PTA that can substantially accelerate simulations and improve convergence performance without introducing extra errors. Furthermore, our method does not require any pre-computation data or offline training. The acceleration framework can either be implemented to speed up ongoing repeated simulations immediately or to improve new simulations of completely different circuits. BoA-PTA is equipped with cutting-edge machine learning techniques, e.g., deep learning, Gaussian process, Bayesian optimization, non-stationary monotonic transformation, and variational inference via parameterization. We assess BoA-PTA in 43 benchmark circuits against other SOTA SPICE solvers and demonstrate an average 2.3x (maximum 3.5x) speed-up over the original CEPTA.
翻译:IC设计的最大挑战之一是反复执行计算费用昂贵的SPICE模拟,特别是在涉及高度复杂的芯片测试/核查时。最近,假瞬时分析(PTA)显示是最有希望的继续SPICE解答器之一。然而,PTA效率受到插入的伪参数的极大影响。在这项工作中,我们提议BA-PTA,一种巴伊斯优化加速PTA,一种可以大大加速模拟和提高趋同性能而又不引入额外误差的巴伊西亚州优化PTA。此外,我们的方法并不要求任何预切数据或离线培训。加速框架可以用于立即加速正在进行的重复模拟或改进全不同电路的新模拟。BoA-PTA配备了尖端机器学习技术,例如深层学习、高山进程、巴耶斯优化、非静态单质变形和通过参数化变形推导。我们用43个BoA-PTA比其他SOTA SPICE解算器的基准电路路段评估了43个基准电路段,并展示了平均2.3x(峰3.5x)的加速度。