Lie detection is considered a concern for everyone in their day to day life given its impact on human interactions. Hence, people are normally not only pay attention to what their interlocutors are saying but also try to inspect their visual appearances, including faces, to find any signs that indicate whether the person is telling the truth or not. Unfortunately to date, the automatic lie detection, which may help us to understand this lying characteristics are still fairly limited. Mainly due to lack of a lie dataset and corresponding evaluations. In this work, we have collected a dataset that contains annotated images and 3D information of different participants faces during a card game that incentivise the lying. Using our collected dataset, we evaluated several types of machine learning based lie detector through generalize, personal and cross lie lie experiments. In these experiments, we showed the superiority of deep learning based model in recognizing the lie with best accuracy of 57\% for generalized task and 63\% when dealing with a single participant. Finally, we also highlight the limitation of the deep learning based lie detector when dealing with different types of lie tasks.


翻译:测谎被视为每个人在日常生活中都关心的问题,因为测谎对人类互动产生了影响。因此,人们通常不仅注意对话者所说的话,而且试图检查他们的视觉外观,包括面孔,以找到任何迹象,表明该人是否在说实话。不幸的是,迄今为止,自动测谎可能帮助我们了解这种谎话特征的测谎仍然相当有限。主要是由于缺少测谎数据集和相应的评估。在这项工作中,我们收集了一个数据集,其中包含了在鼓励撒谎的纸牌游戏中不同参与者面部的附加说明的图像和3D信息。我们利用我们收集的数据集,通过一般化、个人和交叉的测谎实验,评估了基于测谎仪的几类机器学习。在这些实验中,我们展示了深层学习模型的优越性,在与单个参与者打交道时认识到57 ⁇ 和63 ⁇ 最准确的谎言。最后,我们还强调了在处理不同类型测谎任务时基于深学习的测谎仪的局限性。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
20+阅读 · 2020年6月8日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员