Face swapping aims to generate swapped images that fuse the identity of source faces and the attributes of target faces. Most existing works address this challenging task through 3D modelling or generation using generative adversarial networks (GANs), but 3D modelling suffers from limited reconstruction accuracy and GANs often struggle in preserving subtle yet important identity details of source faces (e.g., skin colors, face features) and structural attributes of target faces (e.g., face shapes, facial expressions). This paper presents Face Transformer, a novel face swapping network that can accurately preserve source identities and target attributes simultaneously in the swapped face images. We introduce a transformer network for the face swapping task, which learns high-quality semantic-aware correspondence between source and target faces and maps identity features of source faces to the corresponding region in target faces. The high-quality semantic-aware correspondence enables smooth and accurate transfer of source identity information with minimal modification of target shapes and expressions. In addition, our Face Transformer incorporates a multi-scale transformation mechanism for preserving the rich fine facial details. Extensive experiments show that our Face Transformer achieves superior face swapping performance qualitatively and quantitatively.


翻译:人脸交换旨在生成将源脸部的身份和目标脸部的特征融合在一起的交换图像。大多数现有的方法通过三维建模或使用生成对抗网络(GAN)生成来解决这个具有挑战性的任务,但三维建模受限于有限的重建精度,GAN通常难以保留源脸部的微妙但重要的身份细节(例如皮肤颜色,脸部特征)和目标脸部的结构属性(例如脸型,面部表情)。本文介绍了一种新颖的人脸交换网络Face Transformer,可以同时准确地保留源身份和目标属性在交换的人脸图像中。我们为人脸交换任务引入了一个变换器网络,该网络学习源和目标脸部之间高质量的语义感知对应关系,并将源脸部的身份特征映射到目标脸部的相应区域。高质量的语义感知对应关系实现了源身份信息的平滑和准确传递,同时最小化对目标形状和表情的修改。此外,我们的Face Transformer还采用了多尺度变换机制,以保留丰富的微妙的面部细节。大量实验证明,我们的Face Transformer在定性和定量的人脸交换性能方面均优于先前的方法。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月13日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
【CVPR2020-Facebook AI】前置不变表示的自监督学习
专知会员服务
46+阅读 · 2020年4月19日
大白话用Transformer做BEV 3D目标检测
PaperWeekly
1+阅读 · 2022年6月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员