During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and attempts to find the best solution. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning technique and provisioned using the AG-based greedy method.


翻译:在网络规划阶段,由于IP-超弹性光学网络(IP-over-EON)具有更大的灵活性,因此,通过高效资源分配和静态交通需求提供IP-超弹性光学网络(IP-over-EON)实施的最佳网络规划与固定网格波长分多氧化网络(WDM)网络相比具有相当大的挑战性。由于IP-over-EON的灵活度提高,为此使用的数学优化模型可能无法为大型网络提供解决方案,因为计算复杂程度很大,因此,为此使用的数学优化模式可能无法为大型网络提供解决方案。在这方面,可使用贪婪的惯性惯性惯性惯性模式,即从静态交通需求矩阵中按顺序直接选择交通流量要素,并试图找到最佳的解决方案。然而,一般来说,这种贪婪的超自然现象提供了亚优的解决方案,因为很少选择适当的交通序列提供最佳性能。在这方面,我们提议采用强化学习技术(特别是Q-学习方法),结合基于辅助图形(AG)的节能高效贪婪方法,用于大型网络规划。使用Q-学习方法决定交通分配的适当顺序,以便整个网络电力消耗减少。在拟议的超常态中选择基于固定交通需求的每次交通需求。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员