Knowledge Base Question Answering (KBQA) tasks that involve complex reasoning are emerging as an important research direction. However, most existing KBQA datasets focus primarily on generic multi-hop reasoning over explicit facts, largely ignoring other reasoning types such as temporal, spatial, and taxonomic reasoning. In this paper, we present a benchmark dataset for temporal reasoning, TempQA-WD, to encourage research in extending the present approaches to target a more challenging set of complex reasoning tasks. Specifically, our benchmark is a temporal question answering dataset with the following advantages: (a) it is based on Wikidata, which is the most frequently curated, openly available knowledge base, (b) it includes intermediate sparql queries to facilitate the evaluation of semantic parsing based approaches for KBQA, and (c) it generalizes to multiple knowledge bases: Freebase and Wikidata. The TempQA-WD dataset is available at https://github.com/IBM/tempqa-wd.
翻译:涉及复杂推理的知识基础问题解答(KBQA)任务正在成为一个重要的研究方向。然而,大多数现有的KBQA数据集主要侧重于对明确事实的通用多点推理,主要忽略了时间、空间和分类推理等其他推理类型。在本文件中,我们提出了一个时间推理基准数据集,TempQA-WD,以鼓励研究扩大目前的方法,以针对更具有挑战性的一组复杂推理任务。具体地说,我们的基准是一个回答数据集的时间问题,其优点如下:(a) 它基于维基数据,这是最经常整理的、可公开获得的知识库,(b) 它包括中间的分级查询,以便利对基于语系分解法的KBQA方法的评价,以及(c) 它向多种知识库(Freebase和Wikidata)的概括。TemQA-WD数据集可在https://github.com/IBM/tempqa-wd查阅。