Image harmonization aims to modify the color of the composited region with respect to the specific background. Previous works model this task as a pixel-wise image-to-image translation using UNet family structures. However, the model size and computational cost limit the ability of their models on edge devices and higher-resolution images. To this end, we propose a novel spatial-separated curve rendering network(S$^2$CRNet) for efficient and high-resolution image harmonization for the first time. In S$^2$CRNet, we firstly extract the spatial-separated embeddings from the thumbnails of the masked foreground and background individually. Then, we design a curve rendering module(CRM), which learns and combines the spatial-specific knowledge using linear layers to generate the parameters of the piece-wise curve mapping in the foreground region. Finally, we directly render the original high-resolution images using the learned color curve. Besides, we also make two extensions of the proposed framework via the Cascaded-CRM and Semantic-CRM for cascaded refinement and semantic guidance, respectively. Experiments show that the proposed method reduces more than 90% parameters compared with previous methods but still achieves the state-of-the-art performance on both synthesized iHarmony4 and real-world DIH test sets. Moreover, our method can work smoothly on higher resolution images(eg., $2048\times2048$) in 0.1 seconds with much lower GPU computational resources than all existing methods. The code will be made available at \url{http://github.com/stefanLeong/S2CRNet}.
翻译:图像统一的目的是根据特定背景修改合成区域的颜色 。 在 S$2$48 的 CRNet 中, 我们首先将此项任务作为使用 UNet 家族结构的图像到图像的缩略图解解析。 但是, 模型的大小和计算成本限制了其模型在边缘装置和高分辨率图像上的能力。 为此, 我们提出一个新的空间分隔曲线转换网络( S$2$2$CRNet ), 以便首次使用高效高分辨率图像统一。 在 S$20$CRNet 中, 我们首先从隐藏的图像和背景缩略图中提取空间分离的嵌入。 然后, 我们设计一个曲线转换模块( CRMM ), 该模型使用线性层次来学习和整合其模型模型模型模型在边缘区域绘制精度曲线映射图的参数。 最后, 我们直接使用所学的颜色曲线曲线将原始的高分辨率图像转换为。 此外, 我们还可以通过 Casudead- CRM 和 Senticle- CRM 分别从隐藏的更高分辨率和精度图解的缩缩图解的缩图解 4 。 的计算中, 将显示方法在先前的缩略度/ massloudal- mass- dreal- dreal- greal- gloudal- greal 上, lad- lad- labal- lad- lad- lad- lad- lad- sal- lad- lad- lad- ladessald- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- ladal- lad- lad- ladal- ladal- lad- ladal- lad ladal- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad- lad