AI systems have the potential to produce both benefits and harms, but without rigorous and ongoing adversarial evaluation, AI actors will struggle to assess the breadth and magnitude of the AI risk surface. Researchers from the field of systems design have developed several effective sociotechnical AI evaluation and red teaming techniques targeting bias, hate speech, mis/disinformation, and other documented harm classes. However, as increasingly sophisticated AI systems are released into high-stakes sectors (such as education, healthcare, and intelligence-gathering), our current evaluation and monitoring methods are proving less and less capable of delivering effective oversight. In order to actually deliver responsible AI and to ensure AI's harms are fully understood and its security vulnerabilities mitigated, pioneering new approaches to close this "responsibility gap" are now more urgent than ever. In this paper, we propose one such approach, the cooperative public AI red-teaming exercise, and discuss early results of its prior pilot implementations. This approach is intertwined with CAMLIS itself: the first in-person public demonstrator exercise was held in conjunction with CAMLIS 2024. We review the operational design and results of this exercise, the prior National Institute of Standards and Technology (NIST)'s Assessing the Risks and Impacts of AI (ARIA) pilot exercise, and another similar exercise conducted with the Singapore Infocomm Media Development Authority (IMDA). Ultimately, we argue that this approach is both capable of delivering meaningful results and is also scalable to many AI developing jurisdictions.


翻译:人工智能系统既可能带来益处也可能造成危害,但若缺乏持续严格的对抗性评估,人工智能行为体将难以全面评估其风险面的广度与严重程度。系统设计领域的研究人员已开发出多种针对偏见、仇恨言论、虚假/错误信息及其他已证实危害类别的有效社会技术评估与红队测试方法。然而,随着日益复杂的人工智能系统被部署至教育、医疗、情报收集等高风险领域,现有评估与监测方法正逐渐难以实现有效监管。为真正实现负责任的人工智能发展,确保其危害得到充分认知且安全漏洞得以缓解,开创性方法以弥合这一"责任鸿沟"的需求比以往任何时候都更为迫切。本文提出一种协同式公共人工智能红队测试方法,并讨论其前期试点实施成果。该方法与CAMLIS会议本身紧密关联:首次线下公共演示活动即与CAMLIS 2024同期举行。我们系统梳理了该活动的运营设计与结果,以及美国国家标准与技术研究院(NIST)"人工智能风险评估与影响分析"试点项目、新加坡资讯通信媒体发展局(IMDA)开展的同类测试。最终论证表明,该方法不仅能产生实质性成果,且具备在多个人工智能发展辖区的可扩展性。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员