We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton--like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long--standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.


翻译:我们认为布洛伊登的方法和一些非线性方程式的加速方案具有高度正常的一阶一阶一维空空空。 我们的两个主要结果如下。 首先, 我们表明, 使用先前的牛顿式步骤可以确保在类似星域的起点与密度的密度一致。 这大大扩展了这些方法的趋同领域。 第二, 我们确定布洛伊登方法的矩阵更新使q线性系数与迭代的同一线性系数一致。 这导致一个长期存在的问题,即布洛伊登矩阵是否通过显示这确实属于手边设置的情况而汇集在一起。 此外, 我们证明, 布洛伊登方向违反了统一的线性独立性,这意味着无法应用布洛伊登矩阵趋同的现有结果。 高精确度的数值实验证实了扩大的趋同领域, 矩阵更新的q线性趋同, 以及缺乏统一的线性独立性因素。 此外, 这些结果可以扩展为更高顺序的奇异性, 并且布洛伊登的矩阵的矩阵法系可以不使用自由趋同的 。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
机器学习速查手册,135页pdf
专知会员服务
336+阅读 · 2020年3月15日
专知会员服务
158+阅读 · 2020年1月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员