This paper is dedicated to Prof. Eduardo Sontag on the occasion of his seventieth birthday. In this paper, we build upon the ideas first proposed in Gladyshev (1965) to develop a very general framework for proving the almost sure boundedness and the convergence of stochastic approximation algorithms. These ideas are based on martingale methods and are in some ways simpler than convergence proofs based on the ODE method, e.g., Borkar-Meyn (2000). First we study the original version of the SA algorithm introduced in Robbins-Monro (1951), where the objective is to determine a zero of a function, when only noisy measurements of the function are available. The proof makes use of the general framework developed here, together with a new theorem on converse Lyapunov stability, which might be of independent interest. Next we study an alternate version of SA, first introduced in Kiefer-Wolfowitz (1952). The objective here is to find a stationary point of a scalar-valued function, using first-order differences to approximate its gradient. This problem is analyzed in Blum (1954), but with a very opaque proof. We reproduce Blum's conclusions using the proposed framework.
翻译:本文专门献给爱德华多·松塔教授(Eduardo Sontag ) 70岁生日时的Eduardo Sontag教授。 在本文中,我们借鉴Gladyshev(1965年)首次提出的想法,制定一个非常笼统的框架,以证明几乎可以肯定的界限和随机近似算法的趋同性。这些想法基于马丁格尔方法,在某些方面比基于ODE方法(例如Borkar-Meyn)的趋同性证据简单一些。例如Borkar-Meyn(2000年)。我们首先研究Robbins-Monro(1951年)引入的SA算法的原始版本,目的是确定一个函数的零值,只有对函数进行响亮的测量(1965年),才能确定函数的零值。证据利用在这里开发的总框架,连同关于Lyapunov 稳定性的新理论,可能具有独立的兴趣。我们接下来研究一个SA的替代版本,首先在Kiefer-Wolfowitz(1952年) 。我们在这里研究的是,目的是要找到一个标定值函数的固定点,用第一个点,用第一个测值函数的值功能来估计其梯度结论。 。这个问题在Blum(1954),但用非常不透明的复制。我们用一个框架来分析这一问题。我们使用了Blum 复制。