Decentralised Machine Learning (DML) enables collaborative machine learning without centralised input data. Federated Learning (FL) and Edge Inference are examples of DML. While tools for DML (especially FL) are starting to flourish, many are not flexible and portable enough to experiment with novel processors (e.g., RISC-V), non-fully connected network topologies, and asynchronous collaboration schemes. We overcome these limitations via a domain-specific language allowing us to map DML schemes to an underlying middleware, i.e. the FastFlow parallel programming library. We experiment with it by generating different working DML schemes on x86-64 and ARM platforms and an emerging RISC-V one. We characterise the performance and energy efficiency of the presented schemes and systems. As a byproduct, we introduce a RISC-V porting of the PyTorch framework, the first publicly available to our knowledge.
翻译:分散式机器学习 (DML) 可以在没有中央输入数据的情况下进行协作式机器学习。联邦学习 (FL) 和边缘推理是 DML 的例子。虽然 DML 工具 (特别是 FL) 开始蓬勃发展,但许多工具不够灵活和可移植,无法在新型处理器 (例如 RISC-V)、非完全连接的网络拓扑和异步协作方案上进行实验。我们通过一种领域特定语言,将 DML 方案映射到底层中间件 (即 FastFlow 并行编程库) 中,克服了这些限制。我们通过在 x86-64 和 ARM 平台以及新兴的 RISC-V 平台上生成不同的 DML 方案来进行实验。我们对所呈现方案和系统的性能和能源效率进行表征。作为附带产品,我们介绍了 PyTorch 框架的 RISC-V 移植,在我们所知道的范围内是首个公开可用的。