Dynamical low-rank algorithms are a class of numerical methods that compute low-rank approximations of dynamical systems. This is accomplished by projecting the dynamics onto a low-dimensional manifold and writing the solution directly in terms of the low-rank factors. The approach has been successfully applied to many types of differential equations. Recently, efficient dynamical low-rank algorithms have been applied to treat kinetic equations, including the Vlasov--Poisson and the Boltzmann equation, where it was demonstrated that the methods are able to capture the low-rank structure of the solution and significantly reduce numerical cost, while often maintaining high accuracy. However, no numerical analysis is currently available. In this paper, we investigate the error analysis for a dynamical low-rank algorithm applied to the multi-scale linear Boltzmann equation (a classical model in kinetic theory) to showcase the validity of the application of dynamical low-rank algorithms to kinetic theory. The equation, in its parabolic regime, is known to be rank one theoretically, and we will prove that the scheme can dynamically and automatically capture this low-rank structure. This work thus serves as the first mathematical error analysis for a dynamical low-rank approximation applied to a kinetic problem.
翻译:动态低位算法是计算动态系统低位近似值的一组数字方法。 这是通过将动态投射到低位元中,并以低位因素直接写出解决方案来实现的。 这种方法已经成功地应用于许多类型的差异方程。 最近, 高效动态低位算法应用到处理动动方程, 包括Vlasov-Poisson 和 Boltzmann 等式, 这表明这些方法能够捕捉解决方案的低位结构, 并大幅降低数字成本, 同时往往保持高准确性。 但是, 目前没有数字分析。 在本文中, 我们调查了用于多级线性线性波尔茨曼等式( 动力理论的经典模型) 的动态低位算法的错误分析, 以展示动态低位算法应用到动能理论的正确性。 方程式在理论上是已知的, 而我们将会证明, 计划可以动态和自动捕捉到这个低位结构。 因此, 这项工作可以作为第一个数字性动态的里程问题。