Neural Networks (NNs) can provide major empirical performance improvements for robotic systems, but they also introduce challenges in formally analyzing those systems' safety properties. In particular, this work focuses on estimating the forward reachable set of closed-loop systems with NN controllers. Recent work provides bounds on these reachable sets, yet the computationally efficient approaches provide overly conservative bounds (thus cannot be used to verify useful properties), whereas tighter methods are too intensive for online computation. This work bridges the gap by formulating a convex optimization problem for reachability analysis for closed-loop systems with NN controllers. While the solutions are less tight than prior semidefinite program-based methods, they are substantially faster to compute, and some of the available computation time can be used to refine the bounds through input set partitioning, which more than overcomes the tightness gap. The proposed framework further considers systems with measurement and process noise, thus being applicable to realistic systems with uncertainty. Finally, numerical comparisons show $10\times$ reduction in conservatism in $\frac{1}{2}$ of the computation time compared to the state-of-the-art, and the ability to handle various sources of uncertainty is highlighted on a quadrotor model.
翻译:神经网络(NNs)可以为机器人系统提供重大的实证性能改进,但它们也给正式分析这些系统的安全性能带来挑战。 特别是, 这项工作侧重于用 NN 控制器来估计远可实现的封闭环系统。 最近的工作为这些可实现的数据集提供了界限, 而计算高效的方法提供了过于保守的界限( 无法用来核查有用性能), 而更紧的方法太紧, 无法在线计算。 这项工作通过为与NNN控制器一起的闭环系统进行可达性分析开发一个螺旋式优化问题来弥补差距。 虽然解决方案比先前的半定型程序方法要紧得多,但它们的计算速度要快得多, 有些可用的计算时间可以用来通过输入设定的分隔来改进界限,这比克服紧凑性差距还多。 拟议框架进一步审议测量和过程噪音的系统,从而适用于现实的不确定系统。 最后, 数字比较表明, $\ frac1 ⁇ 2} 与基于半定型程序的方法相比, 计算时间减少了10美元。 与各种变数源相比, 的计算能力显示, 度和四等处理能力显示, 度的计算时间减少了10美元。