A splitting scheme for backward doubly stochastic differential equations is proposed. The main idea is to decompose a backward doubly stochastic differential equation into a backward stochastic differential equation and a stochastic differential equation. The backward stochastic differential equation and the stochastic differential equation are then approximated by first order finite difference schemes, which results in a first order scheme for the backward doubly stochastic differential equation. Numerical experiments are conducted to illustrate the convergence rate of the proposed scheme.


翻译:提出了后向的双随机差分方程式的分裂计划,主要想法是将后向的双随机差分方程式分解成后向的随机差分方程式和随机差分方程式。 后向的随机差分方程式和随机差分方程式随后被第一级有限差分方案相近,从而形成后向的双随机差分方程式的第一顺序方案。 进行了数字实验,以说明拟议办法的趋同率。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
5+阅读 · 2019年1月16日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员