We present a coupled Variational Auto-Encoder (VAE) method that improves the accuracy and robustness of the probabilistic inferences on represented data. The new method models the dependency between input feature vectors (images) and weighs the outliers with a higher penalty by generalizing the original loss function to the coupled entropy function, using the principles of nonlinear statistical coupling. We evaluate the performance of the coupled VAE model using the MNIST dataset. Compared with the traditional VAE algorithm, the output images generated by the coupled VAE method are clearer and less blurry. The visualization of the input images embedded in 2D latent variable space provides a deeper insight into the structure of new model with coupled loss function: the latent variable has a smaller deviation and a more compact latent space generates the output values. We analyze the histogram of the likelihoods of the input images using the generalized mean, which measures the model's accuracy as a function of the relative risk. The neutral accuracy, which is the geometric mean and is consistent with a measure of the Shannon cross-entropy, is improved. The robust accuracy, measured by the -2/3 generalized mean, is also improved.


翻译:我们用非线性统计混合原则,提出了一种同时变化的自动编码器(VAE)方法,该方法提高了代表数据概率推算的准确性和稳健性。新方法模型模拟了输入特性矢量(图像)之间的依赖性,并使用非线性统计混合原则,将原始损失函数与同时的外端函数相通,从而给外端量一个更高的惩罚。我们用MNIST数据集来评估连接的 VAE 模型的性能。与传统的 VAE 算法相比,由同时的 VAE 方法生成的输出图像更加清晰和模糊。2D潜伏变量空间内嵌入的输入图像的可视化更深入地了解新模型的结构,同时计算损失函数:潜伏变量偏差较小,而较紧凑的潜伏空间生成输出值。我们用通用平均值来分析输入图像可能性的直方图图,该图测量模型的准确性作为相对风险的函数。中性精确度是几何平均值,并且与香农横向交叉精确度的测量度一致。测量了。经过测量的精确度,通过光度2 也得到了改进。

0
下载
关闭预览

相关内容

【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
专知会员服务
26+阅读 · 2021年7月11日
专知会员服务
48+阅读 · 2021年4月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
6+阅读 · 2018年4月4日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
3+阅读 · 2017年7月6日
VIP会员
相关资讯
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员