This paper explores strategies to transform an existing CPU-based high-performance computational fluid dynamics (CFD) solver, HyPar, for compressible flow simulations on emerging exascale heterogeneous, CPU+GPU, computing platforms. The scientific motivation for developing a GPU enhanced version of HyPar is to simulate canonical flows, such as homogeneous isotropic turbulence (HIT) of compressible flow in a triply periodic box. We show that optimizing memory operations and thread blocks results in a code that is more than 200x faster on GPUs than on CPUs. Using multiple GPUs and MPI communication, we demonstrate both strong and weak scaling of our GPU-based HyPar implementation on the Summit supercomputer at Oak Ridge National Laboratory.
翻译:本文探索了改造现有基于CPU的高性能计算流体动态解码器HyPar的战略,用于模拟新兴缩放异质、CPU+GPU、计算平台的压缩流程。开发GPU增强版HyPar的科学动机是模拟罐体流,如在三月周期盒内压缩流的同质异向流。我们显示,优化记忆操作和线条块的结果是一个在GPU上比CPU更快200倍的代码。我们利用多个GPU和MPI通信,在橡树岭国家实验室的顶级超级计算机上展示了我们基于GPU的HyPar的强大和薄弱规模。