A probability distribution allows practitioners to uncover hidden structure in the data and build models to solve supervised learning problems using limited data. The focus of this report is on Variational autoencoders, a method to learn the probability distribution of large complex datasets. The report provides a theoretical understanding of variational autoencoders and consolidates the current research in the field. The report is divided into multiple chapters, the first chapter introduces the problem, describes variational autoencoders and identifies key research directions in the field. Chapters 2, 3, 4 and 5 dive into the details of each of the key research areas. Chapter 6 concludes the report and suggests directions for future work. A reader who has a basic idea of machine learning but wants to learn about general themes in machine learning research can benefit from the report. The report explains central ideas on learning probability distributions, what people did to make this tractable and goes into details around how deep learning is currently applied. The report also serves a gentle introduction for someone looking to contribute to this sub-field.
翻译:概率分布使从业者能够发现数据中的隐藏结构,并用有限的数据建立模型以解决受监督的学习问题。本报告的重点是多式自动代数,这是学习大型复杂数据集的概率分布的一种方法。报告提供了对变式自动代数的理论理解,并整合了当前实地研究。报告分为多个章节,第一章介绍了问题,描述了变式自动代数,并确定了实地的主要研究方向。第二章、第三章、第四章和第五章对每个关键研究领域的细节进行了下潜。第六章总结了报告,并提出了未来工作的方向。一个具有机器学习基本想法但希望在机器学习研究中学习一般主题的读者可以从报告中受益。报告解释了关于学习概率分布、人们如何使这种可能性分布能够被移动和如何深入学习的中央想法。报告还为希望为这个子领域作出贡献的人提供了温和的介绍。