Pruning is a neural network optimization technique that sacrifices accuracy in exchange for lower computational requirements. Pruning has been useful when working with extremely constrained environments in tinyML. Unfortunately, special hardware requirements and limited study on its effectiveness on already compact models prevent its wider adoption. Depth pruning is a form of pruning that requires no specialized hardware but suffers from a large accuracy falloff. To improve this, we propose a modification that utilizes a highly efficient auxiliary network as an effective interpreter of intermediate feature maps. Our results show a parameter reduction of 93% on the MLPerfTiny Visual Wakewords (VWW) task and 28% on the Keyword Spotting (KWS) task with accuracy cost of 0.65% and 1.06% respectively. When evaluated on a Cortex-M0 microcontroller, our proposed method reduces the VWW model size by 4.7x and latency by 1.6x while counter intuitively gaining 1% accuracy. KWS model size on Cortex-M0 was also reduced by 1.2x and latency by 1.2x at the cost of 2.21% accuracy.


翻译:Pruning是一种神经网络优化技术,它牺牲了精确度,以换取较低的计算要求。 Prutning在与极受限制的极小ML 环境中工作时非常有用。 不幸的是,特殊硬件要求和对已经很紧凑的模型有效性的有限研究使得它无法被广泛采用。深度剪裁是一种剪裁形式,不需要专门的硬件,但会受到大量精度下降的影响。为了改进这一方法,我们建议进行一项修改,利用高效的辅助网络作为中间地貌图的有效解释器。我们的结果显示,MLPerfTiny 视觉Wakewords(VWW)的任务的参数减少了93%,KWS(KWS)的任务的参数减少了28%,其精度成本分别为0.65%和1.06%。在对Cortex-M0微控制器进行评估时,我们提出的方法将VWW模型的长度减少了4.7x和1.6x,而直径获得1%的精确度则减少了1%。Cortex-M0的KWS模型大小也减少了1.2x和延缩1.2x,费用为2.21 %。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员