Successive-cancellation list (SCL) decoding of polar codes is promising towards practical adoptions. However, the performance is not satisfactory with moderate code length. Variety of flip algorithms are developed to solve this problem. The key for successful flip is to accurately identify error bit positions. However, state-of-the-art flip strategies, including heuristic and deep-learning-aided (DL-aided) approaches, are not effective in handling long-distance dependencies in sequential SCL decoding. In this work, we propose a new DNC-aided flip decoding with differentiable neural computer (DNC). New action and state encoding are developed for better training and inference efficiency. The proposed method consists of two phases: i) a flip DNC (F-DNC) is exploited to rank most likely flip positions for multi-bit flipping; ii) if multi-bit flipping fails, a flip-validate DNC (FV-DNC) is used to re-select error position and assist single-bit flipping successively. Training methods are designed accordingly for the two DNCs. Simulation results show that proposed DNC-aided SCL-Flip (DNC-SCLF) decoding can effectively improve the error-correction performance and reduce number of decoding attempts compared to prior works.


翻译:连续取消极地代码的解码列表(SCL)对于实际采用极地代码很有希望。 但是, 表现并不令人满意, 代码长度适中。 开发了不同的翻转算法来解决这个问题。 成功翻转的关键是准确识别误差位位位置。 但是, 最先进的翻转战略, 包括超速和深学习辅助( DL 辅助) 方法, 无法有效处理连续的 SSCL 解码过程中的长距离依赖性。 在这项工作中, 我们提议用不同的神经计算机( DNC) 重新选择由DNC 辅助的翻转码位置, 协助单位翻转码。 开发新的动作和州编码是为了提高培训和推断效率。 拟议的方法包括两个阶段: i) 翻转 DNC (F- DNC) 被利用到最有可能的翻动位置;ii) 如果多位翻转法失败, 使用一个翻转的 DNC( FV- DNC) 数字( FV- DNC) 来重新选择错误位置, 协助进行一次性翻转动。 培训方法被有效地设计为两个 DNCSCS- DNCS- 的校正程。

0
下载
关闭预览

相关内容

【Manning新书】C++并行实战,592页pdf,C++ Concurrency in Action
【干货书】机器学习Primer,122页pdf
专知会员服务
108+阅读 · 2020年10月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2017年10月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月16日
VIP会员
相关VIP内容
【Manning新书】C++并行实战,592页pdf,C++ Concurrency in Action
【干货书】机器学习Primer,122页pdf
专知会员服务
108+阅读 · 2020年10月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2017年10月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员