The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters $P$. We propose a low cost variant of the Delta method applicable to $L_2$-regularized deep neural networks based on the top $K$ eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the $L_2$-regularization rate, the approximation error is close to zero even when $K\ll P$. A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.


翻译:三角洲方法是一种典型的程序,用于量化统计模型中的隐性不确定性,但是它直接应用于深神经网络却受到大量参数的阻碍。我们提议了一个适用于Fisher信息矩阵中以最高价值K$egenpair为基础的、以Fisher信息矩阵中最高价值K$2美元为基础的、正规化的深神经网络的三角洲方法的低成本变方。我们处理的是以赫森正好相反的赫森、梯度近似的反外产品或所谓的桑威奇估计器的反外产品来有效计算整齐近似微数。此外,我们为预测级概率的概率提供了一种近似差。我们观察到,当渔业信息矩阵中最小值接近于2美元正常化率时,近似于零。我们用TensorFlow实施的方法演示了该方法的演示,我们展示了基于预测性不确定性的图像的有意义的排序,对于两个基于勒Net的神经网络的概率概率概率概率概率来说是有约束的。 我们观察到,当渔业信息矩阵最小值接近值接近2美元时,只能用SMAIS和CI-10的测算数据测算出正确的数据。

0
下载
关闭预览

相关内容

【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
170+阅读 · 2020年11月13日
专知会员服务
30+阅读 · 2020年11月4日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员