We study extensions of piecewise polynomial data prescribed in a patch of tetrahedra sharing an edge. We show stability in the sense that the minimizers over piecewise polynomial spaces with prescribed tangential component jumps across faces and prescribed piecewise curl in elements are subordinate in the broken energy norm to the minimizers over the broken H(curl) space with the same prescriptions. Our proofs are constructive and yield constants independent of the polynomial degree. We then detail the application of this result to the a posteriori error analysis of the curl-curl problem discretized with N\'ed\'elec finite elements of arbitrary order. The resulting estimators are reliable, locally efficient, polynomial-degree-robust, and inexpensive. They are constructed by a broken patchwise equilibration which, in particular, does not produce a globally H(curl)-conforming flux. The equilibration is only related to edge patches and can be realized without solutions of patch problems by a sweep through tetrahedra around every mesh edge. The error estimates become guaranteed when the regularity pick-up constant is explicitly known. Numerical experiments illustrate the theoretical findings.
翻译:我们研究在四面形共享边缘的一组四面形中指定的片断多面体数据扩展。 我们表现出了稳定性, 也就是说, 在带有指定正切成分的片断多面空间上, 最小化器会跳过面部, 而元素中指定的片断曲律在断裂的能源规范中从属于在断裂的H( curl) 空间上最小化器。 我们的证明具有建设性, 并产生独立于多面体的常数。 然后我们详细描述这一结果的应用, 用于对与任意秩序中N\'ed\' eleec 限定元素分离的卷曲问题的事后错误分析。 由此产生的估测器可靠、 本地高效、 多元度- 度- robust 且价格低廉。 它们是由断裂的相近调构建的。 特别是不产生全球 H( curl) 相容通融通的通量通量调节的断度。 我们的校准度只与边缘补差点有关, 并且可以在不通过对四面边缘进行扫描解决的补交错问题的解决方案的情况下实现。 当常规实验时, 被明确确定时, 选择时会得到保证。 。