In an order-driven financial market, the price of a financial asset is discovered through the interaction of orders - requests to buy or sell at a particular price - that are posted to the public limit order book (LOB). Therefore, LOB data is extremely valuable for modelling market dynamics. However, LOB data is not freely accessible, which poses a challenge to market participants and researchers wishing to exploit this information. Fortunately, trades and quotes (TAQ) data - orders arriving at the top of the LOB, and trades executing in the market - are more readily available. In this paper, we present the LOB recreation model, a first attempt from a deep learning perspective to recreate the top five price levels of the LOB for small-tick stocks using only TAQ data. Volumes of orders sitting deep in the LOB are predicted by combining outputs from: (1) a history compiler that uses a Gated Recurrent Unit (GRU) module to selectively compile prediction relevant quote history; (2) a market events simulator, which uses an Ordinary Differential Equation Recurrent Neural Network (ODE-RNN) to simulate the accumulation of net order arrivals; and (3) a weighting scheme to adaptively combine the predictions generated by (1) and (2). By the paradigm of transfer learning, the source model trained on one stock can be fine-tuned to enable application to other financial assets of the same class with much lower demand on additional data. Comprehensive experiments conducted on two real world intraday LOB datasets demonstrate that the proposed model can efficiently recreate the LOB with high accuracy using only TAQ data as input.


翻译:在一个有秩序驱动的金融市场中,金融资产的价格是通过订单(要求以特定价格购买或销售)的相互作用发现的,这些订单被张贴到公共限制订单簿(LOB)上。因此,LOB数据对于模拟市场动态极有价值。然而,LOB数据不能免费获得,这对希望利用这一信息的市场参与者和研究人员构成挑战。幸运的是,交易和报价(TAQ)数据——到达LOB顶端的订单和市场上执行的交易——更容易获得。在本文件中,我们介绍了LOB娱乐模式,这是从深层学习角度出发,第一次尝试仅使用TAQ数据,重新建立LOB中低价股头五位价格水平,但LOB中处于深度的订单数量是无法自由获取的,因为综合了以下产出:(1) 使用Gated Computer(GRU)模块来有选择地汇编相关报价历史预测;(2) 市场事件模拟器,仅使用普通差异内部网络(ODE-RNNNN),这是第一次尝试尝试尝试,只用经过培训的LO-LA数据模型模拟了一次对在线的准确度的累积;(3) 将数据转化为数据转化为数据转换到升级的模型,可以生成,将Simalal-deal-dealalalalalalal-ald-al-al-de-deald-deald-de-de-de-de-de-de-dealviewalviold-de-de-de-de-de-dealdaldal-de-de-de-dealdalviewaldaldaldaldaldaldaldald-de-de-de-de-deal-de-de-de-de-de-de-de-de-de-de-de-deal-de-de-de-de-de-de-de-de-de-de-de-de-deal-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-l-l-de-de-de-de-de-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-

0
下载
关闭预览

相关内容

循环神经网络(RNN)是一类人工神经网络,其中节点之间的连接沿时间序列形成有向图。 这使其表现出时间动态行为。 RNN源自前馈神经网络,可以使用其内部状态(内存)来处理可变长度的输入序列。这使得它们适用于诸如未分段的,连接的手写识别或语音识别之类的任务。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Tutorial: Designing Distributed Software in mCRL2
Arxiv
0+阅读 · 2021年4月21日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
5+阅读 · 2018年1月16日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员