Directed acyclic graph models with hidden variables have been much studied, particularly in view of their computational efficiency and connection with causal methods. In this paper we provide the circumstances under which it is possible for two variables to be identically equal, while all other observed variables stay jointly independent of them and mutually of each other. We find that this is possible if and only if the two variables are `densely connected'; in other words, if applications of identifiable causal interventions on the graph cannot (non-trivially) separate them. As a consequence of this, we can also allow such pairs of random variables have any bivariate joint distribution that we choose. This has implications for model search, since it suggests that we can reduce to only consider graphs in which densely connected vertices are always joined by an edge.


翻译:已经对带有隐藏变量的定向圆形图模型进行了大量研究,特别是考虑到其计算效率和与因果关系方法的联系。在本文件中,我们提供了两种变量可能完全相等的情况,而所有其他观测到的变量都相互独立,相互独立。我们发现,只有两个变量“紧密相连”,换言之,如果在图形上应用可识别的因果干预无法(非边际地)将其分开,才有可能做到这一点。因此,我们还可以允许这些随机变量配有我们选择的任何双变量。这对模型搜索有影响,因为它表明我们只能考虑那些连接密度高的脊椎总是被边缘连接在一起的图表。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
17+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Bayesian inference of a non-local proliferation model
Arxiv
5+阅读 · 2020年12月10日
Arxiv
17+阅读 · 2019年3月28日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
17+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员