We give an $\widetilde{O}(\sqrt{n})$-space single-pass $0.483$-approximation streaming algorithm for estimating the maximum directed cut size ($\textsf{Max-DICUT}$) in a directed graph on $n$ vertices. This improves over an $O(\log n)$-space $4/9 < 0.45$ approximation algorithm due to Chou, Golovnev, Velusamy (FOCS 2020), which was known to be optimal for $o(\sqrt{n})$-space algorithms. $\textsf{Max-DICUT}$ is a special case of a constraint satisfaction problem (CSP). In this broader context, our work gives the first CSP for which algorithms with $\widetilde{O}(\sqrt{n})$ space can provably outperform $o(\sqrt{n})$-space algorithms on general instances. Previously, this was shown in the restricted case of bounded-degree graphs in a previous work of the authors (SODA 2023). Prior to that work, the only algorithms for any CSP were based on generalizations of the $O(\log n)$-space algorithm for $\textsf{Max-DICUT}$, and were in particular so-called "sketching" algorithms. In this work, we demonstrate that more sophisticated streaming algorithms can outperform these algorithms even on general instances. Our algorithm constructs a "snapshot" of the graph and then applies a result of Feige and Jozeph (Algorithmica, 2015) to approximately estimate the $\textsf{Max-DICUT}$ value from this snapshot. Constructing this snapshot is easy for bounded-degree graphs and the main contribution of our work is to construct this snapshot in the general setting. This involves some delicate sampling methods as well as a host of "continuity" results on the $\textsf{Max-DICUT}$ behaviour in graphs.


翻译:我们给出了 $\ 全方位 { O} (\ sqrt{ n} ) 的 美元- 空算算法 0. 483美元- 准流算法, 用于估算最高定向削减规模 ($textfsf{ Max- DICUT} $ ) 。 在以美元为顶点的一个方向图中, 我们的工作使 $( log n) $- space 4/9 < 0. 45美元 的 近似算法得到改进, 由周、 Golovnev 、 Velusamy (FOCS 2020) 算法( FOCS ), 以美元为顶点( sqright{ n} 算法 ) 。 在以美元为顶点的 Oxlickral 算法中, 以“ comlistal- dal- comlistal oral orals ” 显示, 在以 Cal- dal- dal 工作中, 仅以C- dal- dal- 工作显示Cal- dal- dal- dal- 工作为Cral- 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员