The data-driven finite element method proposed by Kirchdoerfer and Ortiz [1] allows to elude the material modeling step. Instead, a previously obtained data set is used directly in the algorithm to describe the material behavior under deformation. Usually, this data set is expected to be gained experimentally. The following empirical treatment is skipped in the data-driven framework and the data is implemented in the algorithm directly. The data-driven problem is rewritten as a minimization problem of a distance function subject to the conservation laws. This paper presents a computational approach to deduce a data set prior to the finite element computation. Representative volume element computations are conducted to deduce a macroscopic material behavior of a polyurethane foam structure. The typical linear load regime of the foam allows us to generate a large material database which can be used as an input for the data-driven finite element computation. Furthermore, we also work out how to proceed in the case of (non-)linear and (an-)isotropic material behavior in order to obtain suitable material data sets. The numerical example which is conducted with the foam data is a typical rubber sealing profile. In the data-driven computation itself, we use a numerical method proposed in [2] to decrease the computing and storage demands.
翻译:Kirchdoerfer 和 Ortiz [1] 提出的数据驱动有限要素方法使Kirchdoerfer 和 Ortiz [1] 提出的数据驱动有限要素方法得以回避材料建模步骤。相反,在算法中直接使用先前获得的数据集来描述变形中的物质行为。通常,该数据集会得到实验性的结果。在数据驱动框架中跳过以下实验性处理,而数据驱动的有限要素方法则直接在算法中实施。数据驱动问题被重新写成受保护法制约的距离功能的最小化问题。本文介绍了在计算有限要素之前推断数据集的计算方法。 代表数量要素的计算是为了推断聚氨酯泡沫结构的宏观材料行为。典型的泡沫线性负荷系统允许我们生成一个大型材料数据库,作为数据驱动的有限要素计算的一种投入。此外,我们还设法在(非线性) 和 (an) 异质材料行为中进行处理,以便获得合适的材料数据集。 与泡沫数据一起进行的数字性示例是典型的橡胶密封结构图案。 在数据存储计算中,我们使用一个数字方法来计算。